学说网

某饱和蒸汽管道的内径为250mm,蒸汽密度为4.8kg/m3,节流孔板孔径为150mm,流量系数为0.67,则孔板前后压差为40kPa时的流量为(  )

某饱和蒸汽管道的内径为250mm,蒸汽密度为4.8kg/m3,节流孔板孔径为150mm,流量系数为0.67,则孔板前后压差为40kPa时的流量为()。

某饱和蒸汽管道的内径为250mm,蒸汽密度为4.8kg/m3,节流孔板孔径为150mm,流量系数为0.67,则孔板前后压差为40kPa时的流量为(  )

A、7.3KG/H

B、20.4KG/H

C、26400KG/H

D、73332KG/H

参考答案

【正确答案:C】

节流法测量流量的原理是:流体流经节流元件(如孔板、喷嘴等)时,由于流束收缩,在节流件前后产生压差,并利用此压差与流速的关系来测量流量的,由公式可得:,代入数据可得:。

压差式流量计为什么要测静压力?静压力作用什么,怎么测?动压力和流量不应该直接成比例吗?求大神科普

复制一些相关内容,但愿能帮到您:

差压式流量计的测量原理是基于流体的机械能相互转换的原理。在水平管道中流动的流体,具有动压能和静压能(位能相等),在一定条件下,这两种形式的能量可以相互转换,但能量总和不变。

压差流量计是一种测定流量的仪器。它是利用流体流经节流装置时所产生的压力差与流量之间存在一定关系的原理,通过测量压差来实现流量测定。节流装置是在管道中安装的一个局部收缩元件,最常用的有孔板、喷嘴和文丘里管。流量Q的计算公式为:

式中:C为流量系数;ε为气体膨胀修正系数;F为节流部的截面积;g为重力加速度;γ为流体密度;P1和P2分别为节流前后的压力。对于不可压缩的气体,可不考虑气体膨胀修正系数,即流量公式为:

C和ε一般由实验方法确定。目前,压差流量计的标准化程度已相当高,它的构造、尺寸严格按照规定制作时,则可查出C和ε,无需通过实验方法确定。

编辑本段压差式仪表的工作原理

传统的差压式流量(如孔板等)仪表都是属于节流式差压流量仪表。其工作原理都是基于封闭管道中流体质量守恒(连续性方程)和能量守恒(伯努利方程)两个定律。在这里大家首先要重温一下质量守恒(连续性方程)和能量守恒(伯努利方程)这两个定律的实质内容,只有掌握了这两个定律才能懂得压差流量计的工作原理,而且所有的节流式差压流量仪表的原理也就都明白了,下面通过复习一下两个定律来说明塔形流量计(或压差式流量计)的工作原理所说的质量守恒定律(连续性方程)和能量守恒定律(伯努利方程),可以这样去理解:质量守恒:流体在一个封闭的管道中流动,当遇到节流件时,在节流件前后它的质量是不变的,用连续性方程表示为:

V1ⅹA1ⅹρ1=V2ⅹA2ⅹρ2(液体为: V1ⅹA1=V2ⅹA2) 能量守恒:用伯努利方程来表示为是指封闭管道中流体的压力和流速有如下的关系:

P+1/2V2ρ=常数

对于安装有节流件的管道则有:P1+1/2ⅹ(V1)2ⅹρ1=P2+1/2ⅹ(V2)2ⅹρ2

式中: A1、A2 分别是节流件前后的截面积;

V1、V2 分别是A1、A2处的流速;

P1、P2 分别是A1、A2处的压力

ρ1、ρ2 分别是A1、A2处的流体密度;

编辑本段差压式流量计(变压降式流量计)种类

差压式流量计由一次装置和二次装置组成.一次装置称流量测量元件,它安装在被测流体的管道中,产生与流量(流速)成比例的压力差,供二次装置进行流量显示。二次装置称显示仪表。它接收测量元件产生的差压信号,并将其转换为相应的流量进行显示.差压流量计的一次装置常为节流装置或动压测定装置(皮托管、均速管等)。二次装置为各种机械式、电子式、组合式差压计配以流量显示仪表.差压计的差压敏感元件多为弹性元件。由于差压和流量呈平方根关系,故流量显示仪表都配有开平方装置,以使流量刻度线性化。多数仪表还设有流量积算装置,以显示累积流量,以便经济核算。这种利用差压测量流量的方法历史悠久,比较成熟,世界各国一般都用在比较重要的场合,约占各种流量测量方式的70%。发电厂主蒸汽、给水、凝结水等的流量测量都采用这种表计。

力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。力学原理:属于此类原理的仪表有利用伯努利定理的差压式、转子式;利用动量定理的冲量式、可动管式;利用牛顿第二定律的直接质量式;利用流体动量原理的靶式;利用角动量定理的涡轮式;利用流体振荡原理的旋涡式、涡街式;利用总静压力差的皮托管式以及容积式和堰、槽式等等。

编辑本段新一代差压式仪表- 塔形(V形锥)流量计

以孔板、喷嘴和文丘里管为代表的差压式流量计(统称标准节流装置) 在流量领域已应用近百年,其优点是已标准化、结构简单牢固、易于加工制

造、价格低廉、通用性强。但是孔板、喷嘴等在测量性能和结构上存在着严重的缺陷,所以近百年来人们从未间断过对它们的研究和改善工作,但是由于先天结构上的缺陷,其本身固有的一些缺点,至今仍然没能得到很好的解决。如:流出系数不稳定、线性差、重复性不好、准确度也不高。孔板入口锐角这个关键部位易磨损、前部易积污、量程比小、压力损失大,特别是十分苛刻的直管段要求在实际使用中很难满足等。为了克服上述这些不足,人们曾研制出1/4圆孔板、锥形入口孔板、圆缺孔板、偏心孔板、楔形孔板、可更换孔板、等诸多的非标准节流件,试图解决这些问题。但是这些节流件同标准孔板一样,大都没有突破“流体中心突然收缩”这个模式,只是或多或少改善了局部某一个问题,并没有从根本上彻底解决所有问题,这种改进工作到了80年代中期才有了突破性的发展:

塔形流量计的出现打破了沿袭近百年的模式结构,使得节流式差压仪表发生了“质的飞跃”。塔形流量计的重大突破在于:变流体在管道中心收缩为管道边壁逐渐收缩,即利用同轴安装在管道中的塔形体(节流件),迫使流体逐渐从中心收缩到管道内边壁而流过塔形体,通过测量塔形体前后的压差来得到流体的流量。正是这个边壁收缩的结构,使得塔形流量计具有了一系列其他差压仪表无法相比的优点,彻底克服了以孔板为代表的传统差压仪表的诸多缺点。经过国外国内十几年应用和大量的测试数据,已充分证明它能在极短的直管段条件下,以更宽的量程比对各种流体(包括脏污、低流速)进行更准确更有效的测量。从此揭开了差压式流量仪表划时代的崭新一页。可以预言,随着人们对它逐渐认识、了解、熟悉和掌握,必将逐渐和完全取代以孔板为代表的传统差压仪表。

塔形流量计国外称为V-CONE,国内的叫法有多种如V形(型)锥、内锥

环孔流量计、内置文丘里等。尽管名称各异,但原理结构都是一样的。单就节流件来讲,完全是金属件组成,不含任何电子器件。它主要由连接法兰1、测量管2、塔形体6(锥形体)、低压测量管5(兼支架)、正负测压

嘴2、3等组成(详见下图)。 当口径≤DN100时,塔体用负压测量管兼作支撑,口径≥DN150时,要在塔体后部再加支撑管架9,并在支撑管开测量孔8。

当温压一体化型时,需要在后部支撑架前安装测温元件套管10,若采用多参数变送器,则不再需要压力测量点,该变送器差压、压力同时测量并能接受温度信号。

如何计算压力:

可参考?引用标准??HG/T??20570.15—95???《管路的限流孔板》

标准节流装置取压方式有

A.角接取压法:上下游侧取压中心至孔板前后端面的间距各等于取压孔径的一半(对单孔取压而言);如果用环室取压室取压时等于环隙宽度的一半。【适用于孔板、喷嘴、文丘里管】

B.法兰取压法:上下游侧取压中心至孔板前后端面的间距均为25.4±0.8mm或叫做“1英寸法兰取压法”。【?适用于孔板】

C.?径距取压

(1)理论取压法:上游的取压孔中心至孔板前端面距离等于管道内径,下游的取压孔中心

至孔板前端面的间距取决于孔板孔径与管道内径比值d/D,如d/D在0.1~0.8时取压孔位置分

别在0.84D~0.34D范围内变动。【?适用于孔板】

(2)径距取压:上游的取压孔中心至孔板前端面距为D,下游的取压孔中心至孔板前端

面的间距为1/2D.?【?适用于孔板】

(3)管接取压法:上游的取压孔中心至孔板前端面为2.5D,下游的取压孔中心至孔板后

端面的间距为8D.??【?适用于孔板】

实验证明,当β一定时,流量系数α只是Re的函数,只与流体雷诺系数Re有关,也就是和

D:管道直径;v:流体平均流速;ρ:流体密度η:流体黏度;有关。

当雷诺数大于某一数值(界限雷诺数)时,流量系数α可以认为是一个常数。

补充说明:?标准节流组件应用条件

a.?管道要求??管径Dmin≥50mm

b.直管段长度:???根据节流组件前后的阻力件的安装确定直管段长度;

c.安装

①??节流式流量计的安装

??节流件开孔必须与管道同轴;

??节流件方向不能装反;

??管道内部不得有突出物;

??节流件装置附近不得安装测温组件或开设其它测压口。

??应遵循使用手册的要求。

②??引压管路的安装

??引压导管应按被测流体的性质和参数要求使用耐压、耐腐蚀的管材,

??引压管内径不得小于6mm,长度最好在16m以内。

??引压管应垂直或倾斜敷设,其倾斜度不得小于1:

1、2,倾斜方向视流体而定。

相关流量方程的推导【详见附图】

节流孔板的孔径计算

根据DL/T 5054—1996《火力发电厂汽水管道设计技术规定》,水管道节流孔板孔径可按下式计算:

(4)

式中:dk——节流孔板的孔径;

ρ——水的密度。

举个例子,根据现场的实际运行数据,正常运行时热井的补水量约20 t/h,泵出口压力约1.5 MPa,扣除泵进口压力,扬程约134 m,查性能曲线,对应的流量为136.8 t/h,即经再循环管回流至补给水箱的除盐水量约116 t/h。根据式(4)得:第1级节流孔板孔径dk1=40.68 mm,取40.7 mm;第2级节流孔板孔径dk2=48.37 mm,取48.5 mm。

在该管道的第一次设计变更时,流量按常规泵的再循环量(最大流量的30%)选取,取60 t/h,且压降没按几何级数递减考虑,两级孔板孔径均为33 mm。根据实际运行情况,经再循环管回流至补给水箱的除盐水量应约116 t/h,但由于节流孔板的限流作用,流经再循环管的水量最大只能是第2级节流孔板阻塞流时的流量。因第2级节流孔板后的压力大于液体的饱和蒸汽压力,故第2级节流孔板后出现汽蚀现象,管道产生较大振动和噪音。

免责声明:本网站所提供的所有信息、文章、图片、视频等内容,均基于公开资料整理而来,旨在为用户提供参考和学习的便利。本网站不保证所有信息的完整性和准确性,亦不对因使用本网站内容而造成的任何直接或间接损失承担责任。
信息来源:本网站所发布的信息来源于多个渠道,包括但不限于网络公开资料、官方文件、第三方研究报告等。在收集和整理这些信息时,我们尽力确保信息的真实性和可靠性,但无法避免可能存在的误差或遗漏。因此,用户在使用这些信息时,应自行核实其准确性和完整性。
更新与修改:本网站有权根据实际情况对免责声明进行更新和修改。用户在访问本网站时,应关注并遵守最新的免责声明内容。请用户在使用本网站内容时,务必谨慎对待,并自行承担相关风险。如有任何疑问或建议,请随时与我们联系,我们将竭诚为您服务。
转载请注明出处:http://1xs17.com/jzzs/111465.html

分享:
扫描分享到社交APP